Tecnología del color

- -
- 100%
- +
2.3.3.3 Correcciones de color y ajustes en los perfiles de salida
Ahora estamos en disposición de optar por dos tipos de salida de la escena original escaneada: en papel (W2) o en transparencia. En cuanto a la gestión del color que ejecuta el perfil ICC en la impresión en papel W2, las transformaciones de color ya han sido introducidas arriba. O sea, primero se aplica el enfoque de la colorimetría relativa y, entonces, a través del perfil ICC se selecciona el estilo de compresión de las gamas de reproducción. Aparte de la opción colorimétrica de recorte (clipping) sobre el contorno de la gama de reproducción de salida, el perfil ICC aporta dos estilos de compresión controlada, denominados perceptual (la gama de colores de la imagen se comprime o se ajusta a la gama de colores del dispositivo de salida, donde el balance de grises se mantiene, mientras que la exactitud colorimétrica no se garantiza) y saturación (la saturación/croma de los píxeles de la imagen se mantiene a costa de perder exactitud en la claridad y el tono). El último paso para la impresión en papel es, por supuesto, invertir la transformación de color M2 entre el espacio PCS y el de la impresora, con las características colorimétricas de las tintas CMYK y el papel W2, aspecto que se tratará en profundidad en el capítulo 6 («Reproducción del color en impresoras»).
Si la opción de salida es la de transparencia o diapositiva, resta por hacer los ajustes colorimétricos propios de las condiciones colorimétricas de visualización de una reproducción en transparencia: luz incandescente o halógena tipo A del proyector (TC = 3250 K) con (xA, yA, YA) = (0.4201, 0.3976, 1) y nivel bajo de iluminación ambiental. Si la terna [X(C),Y(C),Z(C)] representa la codificación PCS de un área-color C escaneada de la escena bajo el iluminante F2, pero relativizada con respecto a W1, [X*(C),Y*(C),Z*(C)] la terna triestímulo resultante de aplicar el estilo perceptual de compresión de las gamas de reproducción entre PCS y las características colorimétricas de las tintas CMYK de la impresora (sin considerar W2), de acuerdo con las condiciones de visualización de la salida-transparencia, los ajustes de color necesarios han de implementar un aumento del balance de grises (gamma γ = 1.5) y una transformación de adaptación cromática de tipo von Kries entre D50 y la fuente tipo A. Si designamos como [X^(C),Y^(C),Z^(C)] a la especificación triestímulo que se transfiere a la impresora mediante una transformación de color M4 (cap. 6), ésta quedaría como:

De esta forma, logramos el objetivo colorimétrico principal del formato ICC: notar que la densidad óptica mínima Dmín (τmáx) de la transparencia será equivalente con el iluminante D50, el cual, a su vez, se correspondía con el blanco W1 del papel fotográfico de la escena original que hemos pretendido reproducir de forma cruzada. Y además, aunque los colores medidos sobre la transparencia resultante en su entorno de visualización serán diferentes de los codificados en el espacio PCS, en principio habrá igualación de apariencia del color con respecto a la misma transparencia visualizada en modo reflectivo en el entorno fotocolorimétrico de referencia PCS.
2.3.4 El futuro de la gestión del color
La pretensión de los organismos internacionales de estandarización (IEC, ISO, ICC, etc.) es subdividir la gestión o administración del color en dos frentes, a veces complementarios, como son los formatos ya presentados sRGB e ICC. La codificación o perfil sRGB debería ser predominante para entornos como el hogar y oficinas, con usuarios no profesionales. El formato o perfil ICC quedaría como predominante para los usuarios expertos en sistemas de reproducción y control de color de gama alta, por ejemplo en artes gráficas.
La verdad es todavía queda mucho por hacer sobre este tema; no obstante, las bases sobre lo que es y cómo se pretende solucionar el problema se encuentran en este capítulo. Por ejemplo, las críticas sobre ambos enfoques de gestión del color ya existen en la literatura científica (Green 1998, Lammens 1999). Muchas de las críticas se basan en el problema inherente de implementar los algoritmos fotocolorimétricos en el entorno cuantizado o discreto de la gestión computacional de los microprocesadores (cap. 4: «Almacenamiento y transmisión de imágenes en color») porque, por ejemplo, las transformaciones de color entre dispositivos multimedia se implementan logística y computacionalmente de forma mucho más complicada de como se han explicado aquí.
La crítica principal del perfil sRGB cuestiona si los atajos que propugna el estándar en la gestión del color se implementan y se usan verdaderamente para evitar transformaciones de color redundantes como pasa ahora (Lammens 1999).
Mientras tanto, las críticas al perfil ICC son mucho más numerosas, también porque el proyecto de gestión del color es más ambicioso que el anterior. Pueden resumirse de la forma siguiente (Green 1998, Lammens 1999).
1. La interpretación de PCS: el uso por defecto de la colorimetría relativa y sus consecuencias respecto a la colorimetría absoluta: se igualan los blancos especulares (brillos) en el primero, pero no se mantiene el rango de contrastes o balance de grises; en el segundo ocurre lo contrario.
2. El iluminante de PCS: en el módulo base de gestión del color (CMM base) no es posible implementar una transformación al menos sencilla de adaptación cromática entre D50 y otros iluminantes más extendidos en otros entornos industriales, como el D65 en TV y las industrias textiles.
3. La generación de negro en los procesos de impresión: pasar de RGBescáner a RGBmonitor es aparentemente mucho más sencillo (3 para 3) que entre RGBmonitor y CMYK (3 para 4). En la reproducción impresa la tinta negra se utiliza también para conseguir el mejor balance de grises posible y resaltar los retoques no nítidos y, por tanto, existe un gran número de combinaciones posibles (CMYK) que igualarán un único color (RGB). La elección del algoritmo de generación de negro está influenciado por consideraciones diversas, como la cantidad máxima de tinta-color que puede sobreimprimirse y la importancia de la estabilidad del balance de color en los colores neutros o acromáticos.
4. La caracterización vs. calibración de un dispositivo: los dispositivos exhiben regularmente desviaciones menores a partir de su funcionamiento general bien caracterizado. El formato de fichero no proporciona parámetros específicos que contengan tal información, y aunque es posible para un vendedor-fabricante incluir tales parámetros en sus perfiles (y la habilidad de procesar la información en el módulo de gestión del color CMM), esto sería una excepción en vez de un comportamiento común. La suposición implícitamente hecha por el formato ICC es que esa calibración se ejecuta para mantener el funcionamiento del dispositivo constante, pero no siempre es posible u ocurre así. Por ejemplo, los colorantes que poseen las impresoras digitales (chorro de tinta, etc.) varían significativamente de lote a lote de producción; ya que el usuario no puede llevar a cabo un procedimiento de calibración para asegurar el funcionamiento constante del dispositivo, debería ser posible ajustar el perfil para acomodar las características reales de funcionamiento de tal dispositivo.
5. La proyección de las gamas de reproducción de los dispositivos: los algoritmos de proyección del formato ICC (perceptual, saturación y recorte) representan un número muy reducido y bastante simplificado de todas las técnicas existentes y que generalmente se prefieren en lugar de éstas, pero que, por el momento, no están implementadas.
6. La apariencia del color: como el objetivo colorimétrico principal del formato ICC es conseguir mantener la apariencia del color en la reproducción cruzada del color, el tratamiento de la misma es, por ahora, bastante simplificado en el formato con el uso del espacio CIE-L*a*b* en el espacio PCS, al igual que la selección de la transformación de adaptación cromática de tipo Vo n Kries. Por tanto, parte de lo que se sabe ya sobre apariencia del color (RLAB, LLAB, CIECAM’97) debería ser implementado en futuro cercano sobre un diagrama de flujo de cinco etapas (fig. 2.14) para asegurar el control de la apariencia del color entre dispositivos cruzados de reproducción del color. La clave de este diagrama es que en la etapa intermedia, cuando previamente se han efectuado la caracterización CIE del dispositivo de entrada y el paso al modelo completo de apariencia del color, es donde deberían controlarse todas las operaciones necesarias (proyección de las gamas de colores reproducibles, balance de grises, etc.) para mantener o alterar a voluntad la apariencia del color en el dispositivo de salida, anteriormente claro a la inversión del modelo de apariencia del color y la inversión de la caracterización CIE del dispositivo de salida. Cuanto más completo sea el modelo de apariencia del color en describir los fenómenos perceptuales del color, tanto más seguros estaremos de que no existirá ningún parámetro perceptual cromático que se escape a nuestro control en una reproducción cruzada del color.

Fig. 2.14 Esquema de cómo implementar modelos de apariencia del color en el método de igualación propuesto en las estructuras del perfil ICC con dos espacios perceptuales de color de conexión: a la entrada y a la salida del sistema de gestión del color.
7. Los métodos de interpolación: no están perfectamente definidos los métodos matématicos de interpolación que puede manejar un módulo de gestión del color (CMM) en las transformaciones cuantizadas del color entre dispositivos.
8. Falta de claridad en la descripción de los métodos posibles de creación de las especificaciones de los perfiles de los dispositivos.
9. Para los sistemas de gestión del color basados en el perfil ICC, se necesita ponerse de acuerdo en quiénes van a hacer las transformaciones de color, dónde y cuándo, y estar seguro de que no existirá ambigüedad sobre la interpretación de los datos etiquetados y no etiquetados de los perfiles de los dispositivos.
10. La organización ICC tiene dos objetivos principales en el formato de fichero ICC: primero, facilitar la interoperatividad de perfiles desde fuentes diferentes sobre plataformas (hardware) y aplicaciones (software) diferentes y, en segundo lugar, facilitar la comunicación consistente de color entre los dispositivos. Se puede decir que la especificación cumple el primer objetivo proporcionando un formato de fichero y un espacio de color de conexión razonablemente fuertes y claramente definidos, con un comportamiento común para los componentes dentro de la arquitectura de gestión del color. Sin embargo, el segundo objetivo está menos conseguido, y existen problemas serios sobre las inconsistencias posibles procedentes de los distintos métodos de proyectar los colores de un dispositivo en y desde el espacio PCS. El formato de fichero ICC es un estándar que está evolucionando y se esperan nuevas investigaciones para clarificar esta cuestión en el futuro.
Como resumen de todo este capítulo, podríamos extraer unas críticas generales o cuestiones a resolver sobre los sistemas de gestión del color recordando con ello que este campo de la colorimetría aplicada es un campo en evolución constante debido al trasfondo científico y tecnológico que subyace en el mismo. Así pues, los aspectos que deberían resolverse son:
1. Cada componente de una cadena de reproducción cruzada del color necesita hacer su parte de gestión del color, pero ninguna más. Los softwares de control (drivers) de los escáneres no deberían registrar el color en los espacios de color de las impresoras o imprentas, ni los softwares de control (drivers) de las impresoras o imprentas no necesitan saber qué espacio de color usa el escáner.
2. CMYK es un espacio de color que todavía se sostendrá en el futuro cercano de las artes gráficas. Se necesita, por tanto, que se mantenga completamente incluso en sistemas de reproducción y gestión del color centrados en espacios de color independientes del dispositivo.
3. Las intenciones de conversión entre espacios de color son apropiadas y necesitan conservarse para la clase alta de gestión del color, pero un conversor que se ajuste a todos los tipos de perfiles o a todas las transformaciones podría ser apropiado para la clase baja de gestión del color.
4. Actualmente, existen demasiados procedimientos para hacerlo de forma incorrecta y muy pocos para hacerlo bien (Lammens 1999). Se necesita trabajar con configuraciones comunes e interfaces para usuarios que pro-porcionen los controles del color de forma consistente, inteligible y no redundante.
5. Para mantener todos los tipos posibles de sistemas de reproducción y gestión del color, los fabricantes de equipos multimedia tienen que añadir hardware y/o software complejos en sus dispositivos. Se necesita estándares bien definidos de amplio uso industrial sobre cómo manejar el color de forma que este tipo de complejidad pueda eliminarse o simplificarse, o al menos no duplicarse.
2.4 Apéndice: espacios de color RIMM/ROMM RGB, e-sRGB e ICC-2001
El mundo de la gestión del color no para de evolucionar. Tras lo explicado en los párrafos anteriores, parecía necesario mejorar los defectos del formato ICC, y al fin, se ha conseguido. Si la versión de trabajo (v. 3.5) de este capítulo es del año 1998, ya ha aparecido la versión núm. 4 (ICC 2001), cuyas característi-cas colorimétricas novedosas (tabla 2.7) veremos resumidamente a continuación.
TABLA 2.7
Datos colorimétricos de los espacios de representación del color e-sRGB, ICC PCS, ROMM RGB y RIMM RGB

Con el advenimiento de gran variedad de dispositivos o periféricos, parece que ya no es necesario centrar el flujo de la información cromática alrededor de la visualización de la imagen desde un monitor estándar tipo sRGB. Por ejemplo, ya resulta bastante común enviar directamente las fotos captadas con una cámara digital a una impresora de sublimación. Esto significa que ya no tiene sentido limitar la gama de colores de la imagen a la de un monitor tipo CRT, puesto que no se utiliza en el proceso. Así pues, un nuevo espacio de color independiente del dispositivo, e-sRGB (PIMA 2001, SRGB 2001), pretende capitalizar los nuevos retos de la gestión del color sobre el intercambio de información cromática entre nuevos dispositivos multimedia donde el monitor CRT no sea imprescindible. Para ello, dado que el estándar sRGB seguirá en marcha durante varios años más, se ha optado por un enfoque interoperativo, de forma que el nuevo estándar es una extensión del espacio sRGB. Aunque la propuesta inicial es de PIMA (Photographic and Imaging Manufacturers Association), ya está en fase de desarrollo desde ISO (ISO 22028) y de igual forma desde IEC (IEC 61966-2-2). Por tanto, es mera cuestión de tiempo que este informe pase a ser definitivamente un estándar internacional más bien dentro del campo de la tecnología del color.
Por otra parte, se ha acordado recientemente que la mayoría de las imágenes se pueden clasificar en dos tipos: el referido al dispositivo de transferencia o salida (output-referred) y el referido al contenido colorimétrico original de la escena (scene-referred). Para ello, una familia de sistemas de representación del color de una gran gama de colores reproducibles (con algunos primarios irreales) se han definido también para el almacenamiento, el intercambio y la manipulación de imágenes (Spaulding, Woolfe, Giorgianni 2000). El espacio estándar RGB de salida (Reference Output Medium Metric RGB, ROMM RGB) es un sistema de color de amplia gama diseñado para usarse en las imágenes ya procesadas (manipuladas, listas para transferir, imprimir, etc.). Este espacio está fuertemente ligado al formato ICC PCS, y es compatible por ejemplo con el espacio de color que usa Adobe Photoshop. ROMM RGB está asociado a un entorno específico de visualización y medio de soporte (tabla 2.7), permitiendo una comunicación exacta y eficiente de la apariencia del color de la imagen. El espacio estándar RGB de entrada (Reference Input Medium Metric RGB, RIMM RGB) se basa en el mismo espacio de representación ROMM RGB, y está diseñado para codificar la apariencia del color de imágenes no manipuladas o brutas. Se le asocia, por tanto, con un conjunto de condiciones de visualización propio de escenas al aire libre, es decir, con luz solar, con iluminaciones elevadas y amplio rango dinámico de luminancias (tabla 2.7).
El monitor o la pantalla estándar de visualización del espacio e-sRGB posee un blanco de cromaticidad D65 y luminancia YW = 80 cd/m2, un negro de luminancia YK = 1 cd/m2, y los primarios RGB tienen las mismas cromaticidades que los del espacio sRGB (tabla 2.7). Con estos datos, la transformación de color entre e-sRGB y CIE-XYZ es ya conocida.

El paso no lineal a valores digitales, que depende del nivel de digitalización n (10, 12, 16 bits), es el siguiente:

Así, la conversión de sRGB a e-sRGB es:

Y, la conversión de e-sRGB a e-sYCC es:

Dadas las diferencias colorimétricas existentes entre los espacios e-sRGB y ROMM RGB (tabla 2.7), la conversión entre estos dos espacios de color pasa inicialmente por escalar los valores colorimétricos (lineales) e-sRGB entre 0.53 y 1.68 para, de esta forma, aplicar la ecuación matricial siguiente:

Los valores lineales ROMM RGB se escalan entre 0 y 1, para a continuación, aplicar la transformación no lineal a valores digitales del modo siguiente:

La transformación entre ROMM RGB y ICC PCS es la siguiente:

dado que la nueva especificación ICC PCS se aplica tras la normalización:

donde XPCSYPCSZPCS son los valores triestímulo de la imagen, XW = 85.81, YW = 89.00 (densidad visual D = 0.0506), ZW = 73.42, los valores triestímulo del blanco de referencia del medio, y XK = 0.2980, YK = 0.3091 (densidad visual D = 2.5099), ZK = 0.2550, los valores triestímulo del negro de referencia del medio.
En cualquier caso de manipulación (perceptual o colorimétrica) de la gama de colores reproducibles, los valores triestímulo (lineales) en el espacio e-sRGB deben escalarse entre 0.53 y 1.68 para poder aplicar directamente la transformación matricial siguiente:

Por último, el espacio estándar de entrada RIMM RGB, el que se usará para codificar la colorimetría bruta de una escena, utiliza la misma transformación de color que el espacio ROMM RGB (2.23), pero con la salvedad de que la transformación no lineal a valores digitales se obtiene usando la transformación implementada en Photo CD:

Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.